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Abstract-Boundary value problems for a circular-arc crack embedded in dissimilar materials under the 
application of a point heat source are formulated and solved in closed form. Based on the Hilbert problem 
formulation and a special technique of analytic continuation, exact solutions of the temperature and 
temperature gradient are obtained in an explicit form. It is found that the temperature gradients or heat 
fluxes near the crack tips of a curved crack possess the characteristic inverse square-root singularity in 
terms of the radial distance away from the crack tip which is the same as those obtained for a straight 
crack between dissimilar materials. Due to this singular behavior, the heat flux intensity factor is introduced 
to measure the thermal energy intensification cumulated in the vicinity of the crack tip. Numerical results 
for the temperature and heat flux intensity factor are provided in graphic form. It is shown that the thermal 
system having a smaller crack length would make the heat flux intensity factor lower. Consequently, the 

thermal energy intensification is diminished. 

INTRODUCTION 

THERMAL problems concerning heat sources are fre- 
quently encountered in many sectors of modern tech- 
nology. Such problems may occur, for example, in a 
nuclear reactor core and chemical process equipment. 
There arose the problem of finding temperature and 
heat flux distribution in dissimilar materials con- 
taining imperfections in the form of interface cracks 
under the application of heat sources. Problems of 
this kind present considerable mathematical difficulty. 
In particular, when the geometry of interest is multiply 

connected, the closed form solution is difficult to 
achieve. The singularity of l/Jp of the temperature 
gradient near the crack tip for an infinite cracked plate 

under the uniform heat flow was first derived by Sih 
[l]. The value of p here stands for the radial distance 
measured from the crack tip. Using the Hilbert prob- 
lem formulation [2] and a special technique of analytic 

continuation, Chao and Chang [3] gave a simple and 
compact version of the general solution for the ther- 
mal interface crack problem in dissimilar anisotropic 

media. They found that the temperature gradients 

or heat fluxes near the crack tip always possess the 
characteristic inverse square-root singularity regard- 
less of material anisotropy as the heat conductivity 

coefficients obey the reciprocal relation, k,j = k,,, 

(i Zj). 
In this paper, the emphasis will be placed on the 

determination of the temperature function due to a 
point heat source embedded in dissimilar materials 
with a circular-arc crack. This problem is solved by 
reduction to a boundary value problem of complex 
variable theory in conjunction with a special technique 
of analytic continuation. Exact formulae for the tem- 

pcratures and temperature gradients are obtained in 
closed form and related numerical values of tem- 
perature and heat flux intensity factor [4] are provided 
in graphic form. For a limiting case of a crack with 
sufficiently small arc length, the heat flux intensity 
factor is found to be linearly proportional to the 
square root of the crack length which is very similar 

to the result pertaining to a straight crack in the iso- 
tropic, homogeneous medium given by Chao and 
Chang [4]. 

PROBLEM STATEMENT 

Consider two homogeneous isotropic materials, 

one occupies the region S +, interior to the unit circle 
Y = 1, while the other occupies the infinite region, S-, 
exterior to the unit circle as shown in Fig. 1. The heat 
conductivity of the material in S+ is specified by the 
constant k, and that of the material in S- by k,. If 
the bond between the two materials on the unit circle 
is imperfect, it can be represented as the sum of L and 
L*, where L and L* stand for the segments of circular- 
arc crack and circular-arc bond, respectively. The heat 
flux due to a point heat source is disturbed by the 
presence of an insulated circular-arc lying in the unit 
circle with the center placed at the location of a point 
heat source. The boundary conditions along the crack 
surface can be stated as 

q,$=O 0nL (1) 

qr; = 0 on L (2) 

where qrj (j = 1 for S+ and j = 2 for S-) denote the 
radial heat fluxes and the supercripts + and - are 
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NOMENCLATURE 

ends of crack 

constant coefficients (i = 1,2,. , II) 
constant coefficients (i = I, 2, . n) 
constant coefficients (i = 1,2) 
constant coefficients (i = I 1 2) 

.v, 1‘ rectangular coordinate axcx 
I complex coordinate. .Y+ iI.. 

Greek symbols 
resultant heat flux exerted on crack surface 
net heat flux 

heat flux prescribed on the crack surface 
heat flux intensity fdctot 

conductivity coefficients for isotropic 
material (i = I. 2) 
conductivity coefficients for anisotropic 
material (i. j = 1,2) 
segment of circular-arc crack 
segment of circular-arc bond 
complex polynomial 
constant rate of point heat source 
radial heat flux (j = I. 2) 
radius of the circular-arc crack 

real part of a complex function 
temperature 

d4 A’) 

%(=) 

9 ,(--I 

half angle of crack 

applied temperature gradient at infinity 
coefficients of the polynomial P(z) 
polar angle of the complex plane 
temperature gradient functions for 

flawed plate (j = I. 2) 
radial distance from the crack tip 
polar angle at the crack tip 

temperature functions for unflawed 
plate (; = I, 2) 
temperature functions for flawed 

plate (j= 1,2) 
temperature gradient functions fat 

unflawed plate, (b:,(-_) (,j = I. 2) 
temperature gradient functions for 

Hawed plate, 4;,(z) ( j = I. 2). 

- -1 

used to denote the boundary values of the physical 
quantities as they are approached from S’ and S ~. 
respectively. 

It is convenient to represent the solution as the sum 
of the heat flux due to a point heat source in an 
unflawed plate (Fig. 2(a)) and a corrective solution 
(Fig. 2(b)). for which the boundary conditions are 

q:, = -/7(O) on L (3) 

qr2 = -/r(O) on I, (4) 

where the unknown function /z(O) will be determined 
from the solution corresponding to the problem of a 
point heat source in an unflawed plate. 

Y I 
I S-a kz 

- 
X 

FIN. 1. A single circular-arc crack lying along the interface 
of two dissimilar materials with a point heat source. 

TEMPERATURE FIELD 

Let the point heat source with a constant rate r,,, 

per unit time be located at the origin of the complex 
plane z = x + ir. For the two-dimensional steady state 
heat conduction problem, the temperature field for- 
the unflawed plate satisfies the Laplace equation 

V’T= 0. (5) 

Both the heat fluxes and temperatures are continuous 
along the interface of bonded dissimilar materials. 
they arc 

T, = T1 on L+I.*. (7) 

The solutions associated with equation (5) with 
boundary conditions from equations (6) and (7) are 

(4 (b,’ 

FIG. 2. Superposition of heat flux in ;m unflamed plate and 
a corrective problem. 
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T, = - $ In r 
I 

j= 

i 

1, ZES+ 

2, zcs-' 
(8) 

In view of equation (8) the temperature is set to be 
zero along the interface without loss of generality. The 

temperature T,(x, y) can also be related to the analytic 
function &(z) in the form 

T,(x, Y) = Re h(Z)1 (9) 

and 

R,(z) = &AZ) = - & (10) 
/ 

where the subindex u denotes the unllawed plate, and 

Re stands for the real part of the complex function. 

Having the solution associated with the unflawed 
plate as indicated in equation (8), the unknown func- 
tion h(0) in equations (3) and (4) can then be obtained 
as 

h(B) = $$ (11) 

In order to specify the boundary conditions on the 
crack surface of the flawed plate, the radial heat fluxes 
qr, and circumferential heat fluxes qHi are introduced 
in terms of the temperature gradient Qfj(z) by the 
following equation 

ql-, + iq, = -kj@fj(z) e-” (12) 

where the subindex f denotes the flawed plate and the 
overbar stands for the complex conjugate. 

Let the center of the unit circle be placed at the 

origin of the complex plane, z = x + iy and t = exp (i0) 
be those points of z on ]zl = 1. For this problem, the 
radial heat flux qr will be specified on L while the 

continuity of the radial heat flux and temperature are 
required on L*, i.e. 

q: = qz = - g on L (13) 

qry = qr- = - 2 0nL (14) 

and 

4d = qr2 on L* (15) 

T, = T2 on L*. (16) 

For problems involving arc of discontinuity, it is 
convenient to further introduce the functions 

O,(z) = +rj ; 
0 

) j= 1,2. (17) 

Making use of equations (12) and (17), equations 
(13)-( 16) can now be expressed in terms of @ri(z), 

O,(z) as 

[@f:(t)+@;(t)] = -2;+e-‘* on L (18) 
I 

p&)+@;(t)] = -‘y e-ie on L (19) 
2 

and 

on L* (20) 

on L*. (21) 

It should be noted that equation (21) requires only 
the derivatives 

aT, aT, _=_ 
ao ae 

be continuous across L* instead of the temperature T 

itself as indicated in equation (16). Hence, a complete 
solution to the bi-material crack problem has been 
reduced to the evaluation of four complex functions 

@rj(z), O,(z), (j = 1,2), which must satisfy the con- 
ditions on L and L* as given by equations (18))(21). 

Starting from the assumptions that the radial heat 
flux and temperature are continuous over the bonded 
segment of the circle ]z] = 1, equations (20) and (21) 
may be regarded as the conditions of analytic con- 
tinuation of cDrj(z), O,(z) from S+ to S- across L*. 

Now, $,(t) and o,(t) in equations (20) and (21) may 
be solved explicitly in terms of (Df2 (t) and G,(t), and 
the resulting expressions are valid everywhere in the 
z-plane as 

@‘f,(z) = 
kzfk, 
yjjy @z(z) + q @z(Z) (22) 

I I 

k,-k, 
o,(z) =-2k@~2(z)++2(z). (23) 

I I 

Inserting these equations into the boundary con- 

ditions, equations (18) and (19), and solving them 
simultaneously yields 

Pu(f)+@2(f)l+ +P%2(O+@2(Om = 2f(t) (24) 

P’f2(0-@2(f)l+-P.f2(f)-@2(f)l- = 2g(t) (25) 

where f(t) and g(t) are related to the heat flux on L 

by 

(26) 

(27) 

Knowing that equation (25) is a Plemelj equation for 
the function Q’,?(z) - O,(z) and it has the solution [2] 

~r2(z)-@2(z)=; Lgdt+E,+E,+$. 
s Z 

(28) 

Furthermore, the non-homogeneous Hilbert equation, 
equation (24), gives [2] 



‘4088 C. K CHAC) and L. Y. KUO 

X,,(z) 
@,2(z)+02(z) = ni 

+X0(=) 
D, & 

f(r) + _ + _I 

_ _ 

where the Plemelj function 

X,,(z) = (z-a)- ’ ‘(z-h) “! 

I (29) 

(30) 

which provides the necessary branch cut and is 
selected such that 

Note that the crack-tip heat fluxes possess the 

characteristic inverse square-root singularity as indi- 

cated in equation (30) which is not affected by the 
discontinuous conductivity jumps across the material 
interface. In the present problem, the ends of the crack 

L are Located at a = exp(-iict) and b = exp (icz) and 
the Plemelj function in equation (30) yields 

X”($ = -.,_- !__-.. .-_ 
~~(~--2zcosu+1) 

(31) 

The polynomial P(z) in equation (29) is expressed as 

P(Z) = 6,:-t6,. (32) 

By means of equations (28), (29) and (22), the general 
solutions for the functions $,(z)~ &(z) may be ex- 

pressed as follows 

(34) 

Using the boundary conditions from equations (I 3) 
and (14), the functions f’(t) and g(t) appearing in 
equations (26) and (27) respectively, now reduce to 

and 

s(t) = 0. (36) 

With the aid of equations (35), (36) and evaluating 
the Cauchy integral. equations (33), (34) can be put 
in the form 

The det~rn~~nation of the unknown constants 
appearing in equations (37) and (38) calls for a know- 

ledge of the behavior of the complex functions fat 
small and large values of I:\. First of all, since d), , (-_) 
is holomorphic in S +, it must take the form 

(&(r) = A,,+AIr+ilIz’+ “’ for jz/ < I. (39) 

Substituting equations (39) into ( 17), 0, (z) is found 

to be holomorphic in S Therefore 

.a,, - 
O,(z) = _: +!_‘t-.,. forI:!> I. (40) 

_ - 

Similarly, as G&(z) is holomorphic in S , it must take 
the form 

for 131 > 1 (41) 

where F,, denotes the resultant heat flux exerted on I. 
and To is the applied temperature gradient at infinity. 
i.e. 

Substituting equation (41) into (17), O,(z) is found 
to be holomorphic in S+. Therefore 

I=,, p,:,, 
O:(z) = _? -I- -_ + a holomorphic function 

_ - 

for /z/ < I (43) 

which is holomorphic in S+ with the exception of the 
point I = 0. In the same way, the definition ol‘ the 

function (Dr2(;) may be cxtendcd into the region S’ 
by substituting equations (39), (43) into equation (22) 

B> B, 
@,-z(z) = _; i _ + a holomo~phic fLlnct~on 

I - 

for /:I < I (44) 

where 

Moreover, the function O,(z) in the region S can be 

found by substituting equations (40) and (41) into 
equation (23). It yields 
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o,(z)=B,+;+o f f... - 0 for (z] > 1. 

(46) 

The constants E, and Ez in equation (28) may be 
associated with the coefficients of the series given by 

equations (43) and (44) as 

E, = B, -P, = 
-2k, 

----PO 
k, +k, 

E,=B,-r,=L o 
k;: r. (48) 

2 

Similarly, the constant _& in equation (28) can also 
be found from the behavior of the complex function 
r&(z) -O,(z) for large values of ]z], it gives 

E, = l-,-B, = 
2k, 

__ r-0. 
k, +k, 

In the same manner, the constants 6, and 6, in equa- 
tion (32) may be determined from the behavior of the 
complex function @r2(z) +02(z) at infinity by expand- 
ing the Plemelj function X,(z) for large value of (z]. 

It gives 

6,=ra+Bq-&rTo 
I2 

6, =B,+F,-s,cosc?=~ (F,-1-,cos a). 
I2 

(51) 
In addition, the constants D, and D, in equation (29) 
can also be evaluated from 

near the point ]z] = 0. By expanding the Plemelj func- 
tion X,(z) for small value of ]z], and using equation 

(52) we have 

2k, _ 
D, = -(B2+r0) = -_+ko (53) 

I 2 

D, = &A(& -r. cos a). 
I2 

The remaining unknown, F,, is to be found from 
the condition that the temperature must be single- 

valued, i.e. the temperature must revert to its original 
value as the point z describes a contour around a 

given segment, say L. Applying equation (21) such a 
requirement is equivalent to 

5 
[@‘f:(t)-O;(t)]dt- 

L s 
[@I-O:(t)]dt = 0. 

L 

(55) 

For the purpose of computation in subsequent work, 
equations (22) and (23) may be used to put equation 
(55) in the form 

s L {PF2(f)+@2(olf -P%(f) 

+@2(t)]m) dt = 0. (56) 

The result is 

F,, = 0. (57) 

Now, all the constants appearing in equations (33) 

and (34) have been obtained and the temperature 

gradient functions Q,,,(z) and r&(z) become 

l=,cosa To 
fy-- 

22 II 
(58) 

@)12(z) = & 
1 Jfo(4 
; + ~ 

Z 
--X,(z) 

2 1 
k2 

+k,+k, 
ro-$+Fxo(z) 

2 

r’,coscr F. 
fy-7 

I> z . (59) 

If the applied temperature gradient at infinity 
vanishes, i.e. To = 0, equations (58) and (59) can 
further reduce to 

@‘f,(Z) =s 1 X,(z) 
Z - x0 (4 

L 

;+- 
1 

(60) 

O,,(Z) -$ 
2 

;+y --X0(4 
1 

(61) 

The solutions associated with the boundary con- 
ditions (1) and (2) can then be obtained by applying 
the method of superposition as 

= & [F -X0(z)] (62) 

@2(z) = @u2(z)+@'Tz(z) 

= &p -X,(z)]. (63) 

Integrating equations (62) and (63) with respect to z, 
the temperature functions #J,(Z) and +Z(z) can be 
obtained as 

4,(z) =s 
![ 

ln(2J(l-2zcoscr+z2)+2z-2cosa) 

fin 
2J(l -2zcoscr+zz)-22coscl+2 ( Z I (64) 
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FIG. 3. Polar coordinate at the crack tip 

M=) = F$ 
I 

In(2j(l -~zcoscx+~~)+~~-~~~~~) 

for s1# 0 , and 

force = 0 

In view of equations (62)-(67), it is noted that the 
solutions of temperature or temperature gradient 
pertaining to the inner and outer media of dis- 
similar materials are dependent on their own material 
properties. 

HEAT FLUX SINGULARITY 

In order to examine the local behavior of the tem- 
perature gradients in the vicinity of the crack tips, the 

polar coordinate system (y, 4) centered at the crack 
tip is considered in the present work (Fig. 3). Now. 

we restrict attention to a small region surrounding 
the crack tip z = N, equations (62) and (63) take the 
approximate forms 

for z/2--1 < & < 3n/2-r (68) 

for -n/2-a < 4 < rc/‘2-RI (69) 

where 

Similarly, the local temperature gradients near the 
crack tip 7 = h are 

q,, G(c1. 4’,) 
@, (-) = 2nk +0(l) 

I ,,,‘( 2p) 

for 7c:2+3: < (i, c 3~2+5! (70) 

where 

for r-n/2 < (/I < z+7r;2 (71) 

It is seen that the local temperature gradients pos- 

sess the characteristic inverse square-root singularity 
in terms of the radial distance, p, from the tips of the 
crack. Due to this singular behavior. the heat flux 
intensity factor is then introduced to quantify the 
thermal energy intensification in the vicinity of the 
crack tip which is defined as [4] 

(72) 

where h is the net heat tiux given by 

= k,J(@,(z)@,(zj) ( ; = I. 2). (73) 

Substituting equations (6X) and (69) or (70) and (7 I ) 
into equation (73) and using equation (72). the factor 
Hat crack tip -_ = CI or z = h is found to be 

(74) 

It is interesting to see that the heat Aux intensity 

factor depends only on the crack length and the 
strength of a point heat source. If WC let the crack 

angle c1 be sufficiently small, the factor H becomes 

It is realized that the thermal energy intensification 
disappears (H = 0) for the problem with a perfect 
bond by letting CI = 0 

NUMERICAL RESULTS 

The general solutions to the thermal problem of 
curvilinear crack with a point heat source have been 
presented in equations (62)- (65). Some numerical 
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FIG. 4. Isothermal contours for k,/k2 = 1, G( = 10”. FIG. 6. Isothermal contours for k,/k, = 10, c( = lo”. 

results are given to illustrate the full field temperature 
distribution as well as the heat flux intensity factor. 

ISOTHERMAL CONTOUR 

A detailed understanding of the temperature distri- 
bution is useful to examine the global instability of 
the thermal system. Referring to Fig. 1, the heat flow 
due to the point heat source with a constant rate 
q,, per unit time is obstructed by the presence of an 
insulated circular-arc crack with an angle c( ranging 
from 0” to 180”. All the isothermal contours possess 
the unit q&k, which would reflect the combined 
effects of geometric singularity around tips of the 
crack and thermal properties of the solid media. Fig- 
ures 4-6 indicate the effect on the temperature con- 

FIG. 5. IsothermaI contours for k,/kZ = 0.1, a = IO”. 

tours across the interface between dissimilar materials 
by varying the heat conductivity ratio, kJk,, for a 
relatively small crack CI = IO”. It is shown that the 
presence of the crack has little influence on the tem- 
perature contours as displayed in Fig. 4 for the homo- 
geneous material (k,/k, = 1). Similar observations 
can be made for the nonhomogeneous materials 
k,/k, = 0.1 and kl/k2 = 10 as displayed in Figs. 5 and 
6, respectively. As the heat conductivity of the outer 
material dominates over that of the inner material 
(k,/k, < I), the gradient of the constant temperature 
contours for the inner material is larger than that of 
the outer material in order to maintain the constant 
heat flow across the interface. On the contrary, the 
gradient of the constant temperature contours for the 
outer material is higher than that of the inner material 

\ / / 

FIG. 7. Isothermal contours for k,/k2 = 1, CI = 90”. 
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FIG. 8. Isothermal contours for h,/k: = 0.1. z = 90 

for the case k,,'k, = IO. As the crack extends much 
further along the curved bond, say M = 90-, the tem- 
perature contours for different material combinations 
k,/k, = I, 0.1, and 10 are displayed in Figs. 779. 
respectively. It is seen that the heat flow which travels 
in the direction of the gradient of the constant tem- 

perature contours tends to change its direction around 
tips of the crack. In this case, the presence of an 
insulated crack may play a more influential role on 

the temperature contours. Consequently, it affects the 
intensity of the temperature gradient over a significant 

portion of the interface. 

HEAT FLUX INTENSITY FACTOR 

The heat flux intensity factor. defined in equation 
(72) is introduced as a measure of the thermal energy 

/ 

/ 

I 

\ 
\ 

PI<;. 9. Isothermal contours for X, I,: :- IO. Y = 90 

intensification in the vicinity of the crack tip. Due to 
the symmetric property, only one of the crack tips 
needs to display the factor H for the crack length 
ranging from 0 to 180’. Referring to equation (74). 
the heat flux intensity factor is found to be dependent 
on the strength of a point heat source as well as the 
crack dimension. As the crack length is sufficiently 

small. the factor H is linearly proportional to the 

square-root of the crack length. and is very similar to 

the result for the corresponding problem with uniform 
heat flux applied at infinity [5]. Note that the solutions 
of heat flux in the given problem are independent of 

the material properties. This indicates that the amount 
of the thermal energy cumulated in the vicinity of the 
crack tip would not be influenced by the discontinuous 
jumps of the thermal properties across the interface. 
Namely. the heat flux intensity factor is indepcndcnt 

0 30 60 90 120 150 160 

Half Crack Angle. a (degree) 

FIG. 10. Heat flux intensity factor at Tip-a (or Tip-b) vs half crack angle r. 
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of the heat conductivity coefficients. The dimension- 

less heat flux intensity factor H/q,,,/n vs the crack 

angle LY is displayed in Fig. 10. It is seen that the factor 

H/q,,/x increases smoothly from CI = 0” to 150” and 
jumps to infinity near x = 180”. This is because all the 
heat flow moves towards a relatively small portion of 
the interface and results in increasing the thermal 
energy intensification. 
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